Alpha-helices direct excitation energy flow in the Fenna Matthews Olson protein.

نویسندگان

  • Frank Müh
  • Mohamed El-Amine Madjet
  • Julia Adolphs
  • Ayjamal Abdurahman
  • Björn Rabenstein
  • Hiroshi Ishikita
  • Ernst-Walter Knapp
  • Thomas Renger
چکیده

In photosynthesis, light is captured by antenna proteins. These proteins transfer the excitation energy with almost 100% quantum efficiency to the reaction centers, where charge separation takes place. The time scale and pathways of this transfer are controlled by the protein scaffold, which holds the pigments at optimal geometry and tunes their excitation energies (site energies). The detailed understanding of the tuning of site energies by the protein has been an unsolved problem since the first high-resolution crystal structure of a light-harvesting antenna appeared >30 years ago [Fenna RE, Matthews BW (1975) Nature 258:573-577]. Here, we present a combined quantum chemical/electrostatic approach to compute site energies that considers the whole protein in atomic detail and provides the missing link between crystallography and spectroscopy. The calculation of site energies of the Fenna-Matthews-Olson protein results in optical spectra that are in quantitative agreement with experiment and reveals an unexpectedly strong influence of the backbone of two alpha-helices. The electric field from the latter defines the direction of excitation energy flow in the Fenna-Matthews-Olson protein, whereas the effects of amino acid side chains, hitherto thought to be crucial, largely compensate each other. This result challenges the current view of how energy flow is regulated in pigment-protein complexes and demonstrates that attention has to be paid to the backbone architecture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revisiting the Excitation Energy Transfer in the Fenna-Matthews-Olson Complex

It is believed that the quantum coherence itself cannot explain the very high excitation energy transfer (EET) efficiency in the Fenna-Matthews-Olson (FMO) complex. In this paper, we show that this is not the case if the inter-site couplings take complex values. By phenomenologically introducing phases into the inter-site couplings, we obtain the EET efficiency as high as 0.8972 in contrast to ...

متن کامل

Coherence and Its Role in Excitation Energy Transfer in Fenna-Matthews-Olson Complex.

We show that the coherence between different bacteriochlorophyll-a (BChla) sites in the Fenna-Matthews-Olson complex is an essential ingredient for excitation energy transfer between various sites. The coherence delocalizes the excitation energy, which results in the redistribution of excitation among all the BChla sites in the steady state. We further show that the system remains partially coh...

متن کامل

Rerouting excitation transfers in the Fenna-Matthews-Olson complex.

We investigate, using the hierarchy method, the entanglement and the excitation transfer efficiency of the Fenna-Matthews-Olson (FMO) complex under two different local modifications: the suppression of transitions between particular sites and localized changes to the protein environment. We find that inhibiting the connection between site 5 and site 6, or completely disconnecting site 5 from th...

متن کامل

Nonlinear network model analysis of vibrational energy transfer and localisation in the Fenna-Matthews-Olson complex

Collective protein modes are expected to be important for facilitating energy transfer in the Fenna-Matthews-Olson (FMO) complex of photosynthetic green sulphur bacteria, however to date little work has focussed on the microscopic details of these vibrations. The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level ...

متن کامل

Visualization of excitonic structure in the Fenna-Matthews-Olson photosynthetic complex by polarization-dependent two-dimensional electronic spectroscopy.

Photosynthetic light-harvesting proceeds by the collection and highly efficient transfer of energy through a network of pigment-protein complexes. Interchromophore electronic couplings and interactions between pigments and the surrounding protein determine energy levels of excitonic states, and dictate the mechanism of energy flow. The excitonic structure (orientation of excitonic transition di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 43  شماره 

صفحات  -

تاریخ انتشار 2007